

OVERVIEW

Welcome to my Tron robot, CountBOTula! I will discuss the

background and detail the implementation of my CountBOTula

throughout this writeup as well as outline several experiments I ran

to improve the performance of my algorithm.

BACKGROUND

I started out with a basic bot that employed adversarial search to

win against RandBot consistently 80+% of the time, against WallBot

60+% of the time, TA1 bot more than 40% of the time, and TA2 bot

only a few times. More specifically, my initial implementation used

alpha-beta cutoff to choose the best action. In addition to the main

decide() function, I included two helper functions,

get_ab_cutoff_min() and get_ab_cutoff_max() that calculated the

minimum value and the maximum value of the corresponding

player’s turn, respectively. I decided to use a very simple heuristic

function for this initial warmup bot in order to have a baseline

adversarial search algorithm to work with as I implemented my final

bot. Therefore, for my heuristic, I simply calculated the number of

free spaces on the board to determine which spaces the player

could move to. This took into account spaces that did not include

any walls, barriers, or another player. Overall, this approach worked

but could certainly be improved on. This led me to developing an

adversarial search algorithm with a different heuristic: one that

1

utilizes Voronoi regions, Dijkstra’s search, and supervised learning to

return a more effective heuristic value, leading to more wins in the

game.

Before deciding on adversarial search, I also tried using a

reinforcement learning strategy in which CountBOTula received a

higher reward if it took an action that resulted in a win and was

penalized if it took an action resulting in a loss. Using a basic

reinforcement learning algorithm similar to the RL assignment, my

bot did not perform very well against TA1 bot and TA2 bot.

Figure 1: A reinforcement learning approach using the SARSA-λ algorithm to

assign rewards to certain actions stored in the qtable and episodic rewards

stored in the etable

2

I decided to take a supervised learning approach because with the

time constraint, it seemed more straightforward - however, I would

potentially revisit reinforcement learning and Monte Carlo Tree

Search if I had more time in order to see how it compares with a

supervised adversarial search approach. Additionally, I chose

adversarial search since solely the heuristic could be changed if I

wanted to optimize the algorithm, which is exactly what I planned

to do.

I mapped out my entire plan for an alpha beta cutoff algorithm

using a supervised learning heuristic, as outlined in

Implementation, before getting started on the code.

3

IMPLEMENTATION

PERFORMANCE

CountBOTula incorporates several different approaches to reach an

effective solution that wins against RandBot 95+% of the time,

against WallBot also 95+% of the time, against TA1Bot 90+%, and

against TA2Bot 85+% of the time in the empty room:

Figure 2: CountBOTula (Player 1) performance against RandBot, WallBot, TA1,

and TA2, respectively on the empty_room.txt map

In the center_block.txt map, CountBOTula wins against RandBot

and WallBot also 95+% of the time, against TA1Bot 80+% of the time,

and against TA2Bot 75+% of the time (each TA1Bot and TA2Bot most

of the time):

Figure 3: CountBOTula (Player 1) performance against RandBot, WallBot, TA1,

and TA2, respectively on the center_block.txt map

4

Finally in the diagonal_blocks.txt map, CountBOTula wins against

RandBot and WallBot 95+% of the time, against TA1Bot 80+% of the

time, and against TA2Bot 75+% of the time (against TA1Bot and

TA2Bot most of the time):

Figure 4: CountBOTula (Player 1) performance against RandBot, WallBot, TA1,

and TA2, respectively on the diagonal_blocks.txt map

I also tested CountBOTula on maps of greater than 13 rows x 13

columns, and it wins against the four given bots most of the time.

THE VORONOI + DIJKSTRA HEURISTIC

Initially, I used a plain Voronoi heuristic with my alpha beta cutoff

algorithm. This approach labeled each space on the passed-in

state’s board as closer to Player 1 or Player 2, measured by the

Manhattan distance, the sum of the absolute value of the

differences between corresponding row and column locations

between each player and a space. Player 1’s Voronoi region is

labeled p1_region in the code below, and Player 2’s Voronoi region is

labeled p2_region. The difference between the sizes of these

regions was my initial heuristic in which the player whose Voronoi

region was larger was the winner. However, this did not perform

very well against any of the bots since it only took into account

5

perimeter barriers and not barriers that are located in the center of

the map or in the player’s path:

Figure 5: My initial Voronoi heuristic for adversarial search

Therefore, I knew I had to incorporate some method that would

take into account barriers and more appropriately calculate the

shortest path distance from a given space to a player. I began

brainstorming graph traversal methods and settled on Dijkstra’s

algorithm, transforming the board into a graph that the algorithm

traverses and finds the shortest paths between spaces represented

by graph nodes. I used Dijkstra’s algorithm for other computer

science classes and decided to see how it performed in conjunction

with the Voronoi method, in the game of Tron. It ended up

performing efficiently, resulting in the winning percentages shown

in Figures 2-4.

6

Figure 6: The evaluation function that incorporates Dijkstra’s algorithm,

self.get_costs(), to ultimately determine which player’s Voronoi region is larger

Figure 7: My Dijkstra implementation in which I update each player’s cost list as

well as visited spaces

7

SUPERVISED LEARNING

In order to incorporate a machine learning component in my

algorithm, I decided to take a supervised learning approach from

modifying gamerunner.py to generate a dataset to train my model

in tronmodel.py, incorporating it into my adversarial search heuristic

in bots.py, and testing it on unseen games between CountBOTula

and the provided bots. My dataset, tron_pickle15 is comprised of

board state configurations and corresponding winners of Tron

matches between TA2Bot vs. TA2Bot, TA1Bot vs. TA2Bot, TA1Bot vs.

WallBot, and TA2Bot vs. WallBot. I did not include any data from

RandBot or my own CountBOTula in the training set. Initially, I only

included data from games with TA2Bot vs. TA2Bot but found that

incorporating a more diverse set of examples would improve my

model’s accuracy.

In gamerunner.py, I store each game’s list of boards (one board

state per player move) as a Python list of lists in which each sublist

in the board’s list is a single row on the board. I pickle this file and

then load it in tronmodel.py for preprocessing. To represent my data

in such a way that barriers and visited spaces would be marked as

“un-visitable” spaces and each of the player’s locations could be

represented, I chose to represent each example as a tuple of a

concatenated vector consisting of a total of 338 entries (169 + 169

entries, each 13 x 13 representing a single state’s board) where the

first 169 entries represent a single board in which 1’s represent

occupied spaces and 0’s represent free spaces. The second set of

8

169 entries are all 0’s, except the locations of Players 1 and 2, where 1

represents Player 1 and -1 represents Player 2, respectively. Finally,

the second entry of the tuple is binary and represents the example’s

label: a win (1) or a loss (0). Therefore, boards from the same game

and boards of games with the same outcome will have the same

label.

Figure 8: A snapshot of a single example in my dataset, tron_training, where the

first 169 spots represent the entries converted into 1’s and 0’s. 1’s represent

occupied spaces, including those marked by barriers (‘#’), visited (‘x’), or players

(‘1’ or ‘2’), and 0’s represent free spaces. The second set of 169 spots represents the

entries of the board converted into 0’s, a 1, and a -1, where 1 represents the

location of Player 1, -1 represents the location of Player 2, and 0’s represent all

other spaces (this is a one-hot encoded vector). The corresponding label is either

0 or 1 in which 0 represents a loss and 1 represents a win.

After preprocessing the data, I created a regression supervised

learning model, including train() and predict() functions. This model

predicts the probability that a player will win a game based on a

given board state. I chose to use a regression model over a

classification model since it is ok to classify an action as a winning

or losing action, but it is even more helpful to distinguish between

winning actions and determine which intermediate actions, with

high or low probability (for example, 80% chance of winning versus

a 30% chance of winning) result in a win.

Initially, my model did not perform very well so I decided to

combine it with my Voronoi-Dijkstra approach explained above. I

9

take a weighted sum of the weights produced by my supervised

learning model within my Voronoi heuristic.

Figure 9: A sample of my model weights after training

10

EXPERIMENTS

The cutoff used in my adversarial search algorithm is not considered

a hyperparameter, but I included it here to show how changing the

hyperparameters, learning rate, α, and the number of epochs alters

my regression model’s performance. My alpha-beta cutoff search

algorithm uses a cutoff of 4.

Figure 10: A plot of model Mean Squared Error (MSE) as the number of iterations

increases, α = 0.1, number of epochs = 1500, cutoff = 4

11

Figure 11: A plot of model Mean Squared Error (MSE) as the number of iterations

increases, α = 0.01, number of epochs = 1500, cutoff = 4 (optimal hyperparameter

optimization)

Figure 12: A plot of model Mean Squared Error (MSE) as the number of iterations

increases, α = 0.01, number of epochs = 1000, cutoff = 4 (optimal hyperparameter

optimization)

12

As can be seen in Figures 10-12, a learning rate (α) of 0.01 and 1500

epochs are the hyperparameter values that I finalized for my model.

Larger learning rates could have resulted in unstable training and

tiny rates could have resulted in a failure to train. Figure 11 displays

my finalized learning rate values: α = 0.01 and the number of epochs

= 1500.

Overall, CountBOTula performs better on smaller maps than larger

maps, especially after hyperparameter optimization. This could

possibly be because the dataset my model was trained on does not

include any examples involving larger than 13 x 13 boards. More

specifically, the examples of my dataset include largely one map

type: empty_room.txt, which could be another shortcoming of my

implementation.

SHORTCOMINGS + IMPROVEMENTS

There are shortcomings to CountBOTula along with possible

improvements that I would attempt to implement if I had more

time. One shortcoming is that CountBOTula does not perform as

well on maps with central blocks, such as center_block.txt - it wins

fewer times on these maps compared to empty_room.txt. This is

because a wall-hugging strategy would be most effective in these

types of maps, and CountBOTula does not incorporate a

wall-hugging strategy. For example, CountBOTula performs slightly

worse against WallBot on center_block.txt than on empty_room.txt

which makes sense since WallBot employs a wall-hugging strategy

so it performs relatively better on this type of map. If I had more

13

time, I would add a condition in my main eval_func() that would tell

my bot to traverse the walls if it is playing a game on maps with

center blocks. Currently as is, CountBOTula runs into barriers more

often on center_block.txt than it does on empty_room.txt since

there are more barriers present in center_block.txt than

empty_room.txt.

In addition, CountBOTula could certainly improve the values of the

weights produced by the supervised learning heuristic. If I had

more time, I would ideally like to train my machine learning model

on a larger dataset, perhaps 30,000 to 60,000 examples (as opposed

to 5,750 examples). This is because a larger dataset would expose

my model to more scenarios (giving it more “knowledge” while it

trains). I would preserve the 80/20 train/test split I used for the data

(in order to prevent overfitting to the training set), but more

examples would be included in both the training and testing data.

My weights might also improve if I multiply the regression value

outputted by the predict() function in tronmodel.py by a calculated

coefficient after training my model for several thousands of epochs.

I made sure to normalize the preprocessed data to return numbers

in the range 0 to 1. It is useful to scale the input attributes for a

model that relies on the magnitude of values.

14

